
BG CALIBRATOR
-

REFERENCE MANUAL
Baldur Gíslason

May 1, 2019

Contents

1 Introduction 5

2 Getting started 7
2.1 Installation . 7

2.1.1 System requirements 7
2.1.2 Downloading 7
2.1.3 Installation and first run 7

2.2 Opening a configuration file 8
2.3 Going on-line . 9
2.4 Editing configuration 11

1

Contents Contents

3 Options 15
3.1 Options dialog . 15
3.2 Burn to flash . 18
3.3 Auto burn . 18
3.4 User defined realtime variables 19
3.5 Calibration comments 20
3.6 Ticker variables . 20
3.7 Realtime display panel 20
3.8 Convert binary log file 20
3.9 Sync realtime clock of controller 20
3.10 Download logged data from controller 21
3.11 Configuration presets 21
3.12 Capture event log 22
3.13 View controller errors 22

4 Configuration conversion 24

5 Log viewer 25
5.1 Charts . 30
5.2 X/Y plot . 32
5.3 Histogram . 33
5.4 Interval report . 35
5.5 Reference log overlay 39
5.6 User defined log variables 39
5.7 User defined log variables examples 41

5.7.1 Auto tuning of fuel table 41
5.7.2 Measuring acceleration rate, estimating

power output 43

6 Mathematical expressions 46
6.1 Built in operators and variables 46

7 Scripting 50
7.1 Script invocation 51

7.1.1 Keyboard shortcuts 51
7.1.2 Library . 51
7.1.3 Events . 52

7.2 Script instruction set 52

2

Contents Contents

7.2.1 set . 52
7.2.2 runscript . 53
7.2.3 hold . 53
7.2.4 sleep . 53
7.2.5 while . 54
7.2.6 if . 54
7.2.7 try . 54
7.2.8 error . 55
7.2.9 return . 55
7.2.10 log . 55
7.2.11 endlog . 55
7.2.12 debug . 55
7.2.13 logevent . 56
7.2.14 clipboardprint 56
7.2.15 alert . 56
7.2.16 confirm . 56
7.2.17 creatertvar 56
7.2.18 declare . 57
7.2.19 bottomframe 57
7.2.20 resetplot . 58
7.2.21 haltplot . 58
7.2.22 procedure 58
7.2.23 run . 58
7.2.24 endscript . 58
7.2.25 statusdialog 58
7.2.26 status . 59
7.2.27 onexit . 60
7.2.28 nop . 60
7.2.29 edit . 60
7.2.30 rpc . 60
7.2.31 library . 61
7.2.32 dialog . 61
7.2.33 burn . 64
7.2.34 getcheck . 64
7.2.35 setcheck . 64
7.2.36 settext . 65
7.2.37 isediting . 65
7.2.38 refresheditor 65

3

Contents Contents

7.3 Script examples . 65
7.3.1 Dyno sweep test 65
7.3.2 Slowly increment throttle 66

4

1 Introduction

BG calibrator is a versatile user interface developed by Baldur
Gíslason for use with all sorts of motorsport and industrial
control electronics. The software is built on a modular approach
and has few features that are specific to a single line of controllers.
Therefore at the time of writing, to connect to a controller, a
configuration file compatible with the controller’s firmware is
required. The configuration file describes the data format of
the controller as well as which communications protocols can be
used to connect. The configuration file opened does not have
to match the config stored in the controller but it has to match
the controller’s firmware revision. The application will refuse to
connect if firmware does not match, and a dialog will inform the
user of the correct version. Configuration files are distributed
with the controller firmware as well as downloadable on their
own from the author’s web site. https://controls.is If the
configuration file required to connect to your controller can not
be found, please contact the author. Configuration can be edited
while connected to a controller or off-line without connection to
a controller. Configuration files used by this application typically
have the .cud file extension.

5

https://controls.is

1. Introduction

Figure 1.1: A typical view of the application

6

2 Getting started

2.1 Installation
2.1.1 System requirements

The application has been tested on 32- and 64 bit versions of
Windows 7 SP1, Windows 8 and Windows 10. As of July 2017
Windows XP is unsupported and active development is done on
Windows 10. The application requires minimal disk space and
RAM. CPU power requirements vary depending on the use case,
in general any computer made in the last decade should work.

2.1.2 Downloading
The application is distributed as a Windows Installer file (.msi).
The latest version can be found at https://controls.is/calibrator

2.1.3 Installation and first run
Execute the msi file to install the application. Administrator
privileges should not be necessary. Upon first run of the application,
Windows firewall may prompt you to allow network access.
This must be accepted if the control unit to be interfaced uses
TCP/IP connectivity or if you would like the application to
check for updates automatically. For USB or rs232 connected
control units no network access is necessary.

7

https://controls.is/calibrator

2. Getting started 2.2. Opening a configuration file

Figure 2.1: The initial screen

2.2 Opening a configuration file
To start with, open a configuration file. If you have done this
before, the last known configuration can be re-opened using
a button on the initial screen. Otherwise, select File -> Load
configuration file from the menu bar at the top of the application
dialog. Once the configuration has been opened you will be
greeted by a dialog asking if you’d like to connect to a controller
or work off-line. For certain communications protocols (eg.
TCP/IP or RS232 based) this dialog will have a writable address
field, where the IP address or COM port can be entered. The
last known IP address or COM port is stored in the configuration
file. If you choose to connect, the application will try connecting
to the controller in the background and the status bar on the
bottom of the screen will display the state of the controller
connection. If you do not wish to connect at this time, you can

8

2. Getting started 2.3. Going on-line

choose to do so later by selecting Communication -> Start from
the menu bar.
If you do not have the correct configuration file for your controller,
you should be able to acquire it from https://controls.is/
configs. If you are unsure of which configuration you need,
select Communication -> Scan for controllers from the menu bar.
A dialog will pop up listing all connected controllers that may be
supported by the software and their firmware versions and serial
numbers.

Figure 2.2: Connect dialog

Figure 2.3: Controller scan results

2.3 Going on-line
Whenever a connection is opened with a controller, the application
reads the controller’s memory and compares its values to those
found in the configuration file. If a difference is found, a dialog

9

https://controls.is/configs
https://controls.is/configs

2. Getting started 2.3. Going on-line

Figure 2.4: Difference dialog

pops up that illustrates those differences and presents the user
with three options.

Use remote values The values found in the controller replace
those found in the currently open configuration. Controller
values are unmodified. This is the default option picked if
the user pushes the return key.

Go off-line Cancels connection to the controller, no changes
are made to either config.

Use local values Sends the values from the configuration file
to the controller. A back-up of the controller’s values
is made in the same directory as the configuration file,
named backup followed by a time stamp.

10

2. Getting started 2.4. Editing configuration

2.4 Editing configuration
Once the configuration has been opened, the main screen presents
a tree view of the configurable parameters. Multi dimensional
parameters will have a grid icon () displayed on their left, and
if they are function types their name will be followed by f(x)
notation indicating that they are functions and if applicable,
which real-time variables they are functions of. Single dimensional
items will have a unit icon () displayed on their left and their
name succeeded by their current value and unit of measure in
square brackets.

Figure 2.5: Tree view

The tree view is navigable using the mouse where double clicking
will expand/collapse categories or or by using the arrow keys
on the keyboard. Up/down arrows will navigate the list while
left/right arrows will collapse/expand branches. The return
key also serves to collapse/expand branches. Double clicking

11

2. Getting started 2.4. Editing configuration

or pushing return or right arrow on a config item will enter edit
mode.
Edit mode is primarily keyboard operated but does accept mouse
input for some purposes. Most of the ctrl-key functions listed
are available under a right-click context menu in the editor as
well. When in edit mode, the arrow keys can be used to navigate
multidimensional items, holding the shift key enables selecting a
range of data fields. Entering a number will apply that value to
the selected fields upon press of the return key. Any operations
such as increment/decrement/interpolate, etc are not sent to the
connected controller until the return key is pressed or edit mode
is left by means of the escape key or clicking the back button
visible at the top left of the screen.
For enumerated values, pushing the return key drops down the
list of options so it can be scrolled through. Pushing return
again accepts the new selection.
At present, table axis can not be edited from within the table
editor. The axis breakpoints must rather be defined and edited
as separate items in the configuration.

12

2. Getting started 2.4. Editing configuration

Keys Function
Esc Leave edit mode

ctrl-Z Leave edit mode and discard (undo) changes made
arrows Move cursor

Shift + arrows Select area
return Commit changes

numbers Enter new value for selected field(s)
A Increase selected field(s) by the granularity of the item being edited
Z Decrease selected fields(s) by the granularity
S Increase by 10x the granularity
X Decrease by 10x the granularity
D Increase by 100x the granularity
C Decrease by 100x the granularity

ctrl-A Select all data fields for editing or copying
ctrl-S Select all fields including axis for copying
ctrl-C Copy selected fields
ctrl-D Create keyboard shortcut to edit the current config item
ctrl-V Paste at cursor
ctrl-M Apply clipboard data as modifier (multiply/add/divide)
ctrl-J Interpolate selection horizontally
ctrl-B Interpolate selection vertically
ctrl-L Transform selection (opens dialog)
ctrl-E For breakpoints tied to variable, apply current value at cursor

ctrl-PgUp Switch to previous config item in tree branch
ctrl-PgDn Switch to next config item in tree branch

Figure 2.6: Keyboard shortcuts in edit mode

Keys Function
F1 Switch bottom pane to context help. Invokes variable-specific context help in the editor if bottom pane is already in help mode.
F2 Switch bottom pane to ticker view
F3 Switch bottom pane to dashboard

F12 Start/stop recording live data to file (data log)
Ctrl-F Configuration variable search

Space bar Mark event in data log if currently recording log to native log format

Figure 2.7: Global keyboard shortcuts

13

2. Getting started 2.4. Editing configuration

Figure 2.8: Example of an enumerated data type

14

3 Options

Figure 3.1: Tools menu

3.1 Options dialog
Under Tools -> Options from the menu bar at the top of the
application, a dialog to configure the application can be found.
Those settings are stored in the global application configuration
and not as part of the opened configuration file. At present the
following settings can be configured from the dialog.

Display frame rate Sets the redraw rate of live data displayed
in the application. Has no effect on communication or
logging rates.

Ticker duration Sets the time frame displayed in ticker view.

15

3. Options 3.1. Options dialog

Figure 3.2: Application options dialog

Datalog frequency Can be used to limit logging rate if logs
are to be taken over long periods or viewed with log viewers
that are poorly behaved with large files. A zero means
data is recorded as fast as it is received, any other value
means the logger holds off on writing a new frame to the
log for a duration of the inverse of that frequency.

Confirm when leaving editor If this option is selected, a
dialog will ask you if you wish to make the changes you
did to a configuration item permanent when leaving edit
mode. If you then choose not to save the changes, the
value of the item is reverted to its previous state, before
edit mode was entered.

Enable PLX device chain The application supports logging
additional data from sensors hooked directly to the PC
using the PLX Devices iMFD protocol, so PLX SM-AFR
and comparable devices can be logged and displayed. Once
the correct COM port has been selected the devices will
be automatically detected and created in the real time
variables list with names that start with plx, such as plxafr0
for the first wide band lambda sensor in the chain.

16

3. Options 3.1. Options dialog

Log to CSV format instead of native format If selected,
the default logging format will be comma separated values
instead of the native format. Use this option if you prefer
to use an external log viewer. Note that when logging
directly to CSV format, not all logging features are available.

Prompt for log comment If enabled, a dialogue box will
pop up when logging is ended allowing you to enter a
description for the log session that just ended. If logging to
CSV format this option has no effect.

Record configuration change events to data log If this
option is selected, any config canges made during the log
recording will be recorded in the log at the exact time they
were made. This may prove useful to analyse the effect
different settings have after the fact.

Prompt for log file names If selected, a file dialog will prompt
the user for location and name to save new data log as.
Otherwise the log file will be saved in the same directory
as the currently open configuration file, with a name generated
from the current date and time.

External log viewer The path to a log viewer application. If
this field contains a value, the user will be prompted to
open a log file with the viewer application when logging
ends.

Open last opened configuration on start up and go on-line
This option enables hands-off operation, useful if using the
application for a dashboard display or something similar.

Check if new version of Calibrator is available on start up
If this option is enabled, the application will connect to
the web site on start up and check if the latest version
available from the web site matches the currently installed
version. If the version available on the web site is different,
a button appears on the initial screen. The button disappears
when a configuration is opened.

17

3. Options 3.2. Burn to flash

3.2 Burn to flash
This option manually forces the connected controller to write
changes done to the configuration to non-volatile memory. The
same effect can be achieved by clicking the controller memory
state indicator in the bottom right corner of the application
dialog. Most controllers will not immediately store changes
to their configuration in non-volatile memory. This means if
the controller gets switched off before the changes have been
permanently saved, they can get lost, in which case the application
will alert the user the next time the controller is connected,
as the locally known configuration will not match that of the
controller. If the user closes the application or stops communication
before disconnecting or powering down the controller, saving
data is taken care of automatically.

3.3 Auto burn
Auto burn selects how aggressively the application manages the
process of automatically writing to the controller’s non-volatile
memory. Some controllers may disrupt normal operation during
such writes so in those cases it makes sense to limit the number
of writes done during operation. The options available are as
follow.

Aggressive Writes all changes to non-volatile memory as soon
as they’re committed.

Lazy Writes changes to non-volatile memory only when leaving
edit mode

Off Not really off. Changes are written to non-volatile memory
only when necessary, such as when preparing to shut down
the application or disconnect the controller, or when controller’s
physical memory arrangement prohibits storing all of the
config in temporary memory, in which case some of it will
need to be paged out to non-volatile memory to enable
editing of other parts.

18

3. Options 3.4. User defined realtime variables

3.4 User defined realtime variables

Figure 3.3: Examples of user defined variables calculated from
existing variables

The application lets the user define real-time variables calculated
from the values of any number of other real-time or configuration
items. These are stored inside the configuration file and not in
the app’s global configuration. The basic syntax is detailed in
chapter 6 but with the following additions that only apply to
real time variables:

x Where x is the name of the real time variable, this returns the
value of that variable.

c(x) Where x is the name of a unit configuration item, this
returns the value of that item.

c(x, offset) Where x is the name of an array configuration
item, this returns the value stored at a certain offset in the
array. Offset can be a constant or a computational result.

clookup(x, value) Where x is the name of an array configuration
item, this returns the index at which the value provided is
found, with interpolation.
For example, where fuelrpmbins is an array of 8 values
spanning from 1000 to 8000 evenly spaced,
clookup(fuelrpmbins, 1500) returns a value of 0.5.
clookup(fuelrpmbins, enginespeed) will return 0 if
enginespeed is smaller than or equal to 1000, 7 if enginespeed
is greater than or equal to 8000 and any number in the
middle depending on the index on the curve.

19

3. Options 3.5. Calibration comments

_fps Returns the configured refresh rate of the application,
useful for scripting.

_islogging Returns 1 if a data log is being recorded, 0 otherwise.

_online Returns 1 if controller is connected, 0 otherwise.

3.5 Calibration comments
A dialog that lets the user enter notes to store in the configuration
file.

3.6 Ticker variables
A dialog for selecting which real-time variables are drawn in the
ticker view.

3.7 Realtime display panel
This option launches a customisable dash dialog box. Not documented
at present.

3.8 Convert binary log file
In case the controller the configuration file matches has the
ability to record data on its own, this option is to open a raw
log file and pass it through the log formatter of the application
to convert it into a format compatible with most data viewer
tools.

3.9 Sync realtime clock of controller
If the connected controller has a real time clock, this will sync
that clock to the clock of the system running the application.
This is a manually executed operation that must be run as

20

3. Options 3.10. Download logged data from controller

deemed necessary. Option will be greyed out if no controller
is connected or if connected controller does not support this
feature.

3.10 Download logged data from controller
If the connected controller has internal data recording, this will
open up a dialog to manage the logs stored in the controller and
download them from the controller. Greyed out if no controller
is connected or controller does not support this feature.

3.11 Configuration presets

Figure 3.4: Configuration presets

If the opened configuration file contains any, this is where preset
templates can be found for commonly used combinations, such
as transfer functions for common sensors. Double clicking any of
the present presets will bring up another dialog describing the
preset, detailing which configuration options will be changed and
what their new values will be after applying the preset. Clicking
the OK button or pushing return in that dialog will apply the
preset. Clicking cancel or pushing the escape key will close the
dialog without applying the preset.

21

3. Options 3.12. Capture event log

3.12 Capture event log
If a controller is connected that supports this feature, this option
records a log of events going on at the inputs and outputs of
the controller, namely crank/cam trigger inputs, wheel decoder
state, ignition and injection outputs and more. The log is then
displayed in a logic analyser like graphical display. If the crank
trigger input is of impulse type (single edge) the crank pulses
will be shown having varying height on the graph, the height
indicating the period since the previous pulse, relative to the
longest period shown on the screen. The sync channel if present
has special formatting also, half sync is shown at half height, full
sync is shown at full height and sync loss is shown in red.
Clicking a sample will highlight it in an amber colour and the
time stamp of that sample will be shown at the bottom of the
screen. Then holding the ctrl key and clicking another sample
will highlight that sample in a violet colour and the time stamp
of the violet sample will be shown at the bottom of the screen
along with the time delta between the samples.

3.13 View controller errors
If a controller is connected that supports this feature, this dialog
will decode and display the error variables.

22

3. Options 3.13. View controller errors

Figure 3.5: Event log view

Figure 3.6: Error dialog

23

4 Configuration conversion

Whenever the firmware of a controller is updated in such a way
that alters its internal data structure, an updated configuration
file is required. The application can convert a configuration file
to match the structure of another configuration file meant for
the same type of controller and retain all of the existing settings
that are compatible across versions, settings that exist on the
new config but not on the old config will retain their value as
found in the new config. User defined variables, calibration
comments, dashboards and such settings that have to do with
the application layout and not the controller will retain their
settings from the old configuration file. If one wishes to get the
new layout defaults, the best way is to use the converted file to
transfer the settings to the controller and then connect to the
controller using the default file for that firmware, reading the
settings back from the controller to create a file that has the old
settings but new dashboard layouts, etc.
The process for configuration conversion is as follows.

1. Open the old configuration file as usual, choose to work
off-line.

2. Select File -> Convert configuration file from the menu bar.
Pick a configuration file that matches the current version
of the controller firmware.

3. Save the configuration file, it is ill advised to overwrite the
old file.

24

5 Log viewer

The application provides a built in viewer for viewing log files.
It can read most csv format log files, including but not limited
to the ones recorded by this application. All log viewer settings,
including chart templates and layout templates are stored in
the application config and are independent of any control unit
configuration files. The log viewer can be invoked from the
logging menu in the application main window.
Once a data log file has been opened, the layout can be defined.
The viewer uses tabs to present multiple view pages. Tabs may
be selected by a mouse click or by pressing the number keys
on the keyboard while holding the Alt key. Three tab types
are currently available, one that displays charts as a function
of time, one that displays a X/Y scatter plot showin values on
the Y axis as a function of any other value and a histogram
generator that displays averages of a variable as a function of
one or two other variables. Each chart may be configured by a
right click on the chart and selecting Chart properties from
the context menu.
Following is a description of the menu bar at the top of the log
viewer dialogue.

File :

Open reference file Opens a file for overlaying on the
currently opened file. The variables in the reference
file get their name suffixed :R and by holding the
shift key while dragging across the charts the reference
file can be repositioned in relation to the main file.

25

5. Log viewer

Append another log file at end of current data
Opens another file and the data from that file gets
inserted beginning at 0.1 seconds after the last sample
currently displayed.

Insert another file with compatible time stamps
Opens another file and the data from that file gets
inserted wherever its timestamps place it in relation
to the currently loaded data. Perfect for working with
files generated during the same outing where the time
stamps are from the same starting time.

Save session to file Save the currently displayed data to
a BGLOG file for later review.

Export log to CSV format Save the currently displayed
data to a CSV file for review in other software. Some
details are lost, such as event markers and comments.
CSV files also do not render data sources with varying
sample rates optimally.

Close viewer Closes the viewer dialogue.

Edit :

Discard left of cursor Trims the loaded data, discarding
everything before the position of the cursor (centered
in the chart).

Discard right of cursor Trims the loaded data, discarding
everything after the position of the cursor (centered in
the chart).

Discard all but selection Trims the loaded data, discarding
everything but the selected region.

Layout :

New tab Adds a new tab to the current layout from a list
of possible blank tab types.

Load from tab template Adds a new tab to the current
layout from a list of previously saved tab layouts.

26

5. Log viewer

Save this tab as template Saves the currently displayed
tab for recall at a later time either from the internal
tab template list or to a file.

Close tab Closes the currently displayed tab, but only if
other tabs are present.

Close all tabs but current Close other tabs than the
currently displayed one.

Undo close tab If a tab was closed inadvertently, this
action will re-open it.

Log viewer settings Opens a dialogue box where colours
and other aesthetic features of the log viewer may be
configured.

Import layout from template file Opens a tab template
(single tab) or workspace (multiple tabs) previously
saved to a file.

Add chart If the tab currently displayed is a charts tab,
this will add a new chart to the bottom of that tab
and pop up a configuration dialogue for that chart.

Load chart from template If the tab currently displayed
is a charts tab, this will add a new chart to the bottom
of that tab according to a previously saved template.

Delete chart template This menu permits the deletion
of previously saved chart templates from the internal
template database.

Load workspace template Selecting an item from this
menu will close all currently open tabs and open a set
of tabs previously defined as a workspace template.

Save workspace template Saves the currently open
tabs as a template for later use, either to the internal
template database or to a file.

Delete workspace template This menu permits deletion
of workspace templates from the internal template
database.

27

5. Log viewer

Value display Toggles the value display pane on the right
hand side of the screen for the currently displayed
tab.

Show all variables If selected, the value display pane
displays all of the variables found in the current log.
Otherwise it displays only the variables relevant to
the currently displayed tab.

Rename tab Lets you enter a new title for the currently
displayed tab.

Resize tab items When selected the objects in the tab
no longer respond to mouse or keyboard input but
instead their boundaries may be dragged around.
Select this menu again to finish resizing.

Tools :

User defined variables Opens a dialogue that lets you
define your own channels as math functions of other
channels present in the log.

Decode error variables If a configuration file is open in
the main window and the log file currently displayed
is generated by the same controller firmware as the
configuration originates from, this menu lets you
decode bit mask variables that describe diagnostic
trouble codes.

Recompute user defined variables If any changes have
been made to the log or one or more user defined
variables, this menu can be used to re-run the computation
of the user defined variables.

Log comments Displays comments associated with the
currently displayed log file if any, and lets you enter
new comments that will be retained if the file is then
saved as a BGLOG file.

Copy tab screenshot to clipboard Copies a screenshot
of the currently displayed tab to the Windows clipboard,
which can then conveniently be pasted to e-mail or
instant messenger for review.

28

5. Log viewer

Save tab screenshot to file Saves a screenshot of the
currently displayed tab to a PNG image file.

29

5. Log viewer 5.1. Charts

5.1 Charts

Figure 5.1: Log chart configuration

The chart properties dialog has a number of features, the most
notable being the ability to select which log channels are displayed.
Other notable features:

One scale for all variables If this option is selected, the chart
vertical axis will be scaled in such a way that all variables
are presented on the same scale, as decided by the greatest
and smallest values of all of the variables on the chart.
This is useful if all of the variables displayed are of the
same type (injector pulse widths for different cylinders,
exhaust temperatures of different cylinders, etc).

Fixed maximum If a value is set, this option fixes the upper
limit of the scale for all variables. May be set independently
of fixed minimum.

Fixed minimum If a value is set, this option fixes the lower
limit of the scale for all variables. May be set independently
of fixed maximum.

30

5. Log viewer 5.1. Charts

Time marks Draws a vertical line across the chart at time
intervals of whole seconds, every ten seconds or whole
minutes, depending on zoom level.

Time synchronised If set, this chart is synchronised to the
other charts in centre time and zoom level. If not set this
chart can be panned and zoomed independently of other
charts.

Save chart template This button lets you save the displayed
chart configuration as a template to be loaded when creating
a new chart at a later time.

Figure 5.2: Log viewer dialog frame

The charts may be manipulated in the following ways.

Left/Right arrow keys The left or right arrow keys serve to
pan the log, each press pans by one fiftieth of the displayed

31

5. Log viewer 5.2. X/Y plot

time scale, unless the Ctrl key is held, then the panning
step size is one log sample. Holding the Shift key enables
selecting a time span of the log using the arrow keys.

Up/Down arrow keys The up or down arrow keys serve to
increase or decrease the zoom level. They halve or double
the displayed time span respectively.

Mouse left click By clicking anywhere in the chart, the clicked
location is centered.

Mouse left click and drag Clicking and dragging selects a
time span in the log.

Mouse left click and drag with CTRL pressed Pans the
log along the time axis, also pans vertically when using
discrete plots.

Mouse middle click and drag Pans same as left click+CTRL.

Mouse left click and drag with SHIFT pressed Pans the
reference log along the time axis if one is loaded.

Mouse right click A right click opens a context menu, where
the chart may be configured or deleted, and if a time span
is currently selected the zoom may be set to the selected
span.

Mouse scroll Same effect as up/down arrow keys.

5.2 X/Y plot
In the X/Y plot mode, one variable can be selected for the
X axis and up to 16 variables can be selected for the Y axis.
Configuration is otherwise mostly identical to the time based
charts. The X/Y plot page has one time based chart and the
purpose of that is to be able to limit the time range displayed on
the plot. A selection on the time based chart lets the plot filter
out all samples outside of the selected time frame.

32

5. Log viewer 5.3. Histogram

Figure 5.3: X/Y plot layout

5.3 Histogram
In the histogram mode, weighted average values over the entire
log or a selected period are shown for one variable in relation to
two other variables. The hits are weighed by how close to the
table cell the sample hits, so a sample that hits the dead centre
between four cells on the table affects each one with a weight
of 0.25 while a sample that hits a cell directly affects only that
cell by a weight of 1. The cells are coloured to show the hit rate,
with the cells that represent the greatest number of samples
coloured bright green.
When configuring the histogram, the X and Y axis can be configured
either by entering the number of cells to break the axis into for
automated cell labelling or by entering the values for all of the
cells separated by spaces or tabs to manually define the cells.
Cells with an unacceptably small number of hits may also be
hidden from view, cells with no hits at all will not have any

33

5. Log viewer 5.3. Histogram

Figure 5.4: Histogram layout

Figure 5.5: Histogram properties

value displayed regardless of filter setting. The hit values may be
displayed by right clicking the table and selecting the Show hit
count option.

34

5. Log viewer 5.4. Interval report

5.4 Interval report
In the interval report mode, weighted average values of selected
channels are gathered as a function of a single channel at a
configured interval. Useful for finding trends in multiple data
channels as a function of lap number or engine speed for example.
The default is to show the data as a table and the peak value
of each channel analysed is underlined. By right clicking the
interval report the display may be switched to graphical mode.
As with the histogram, the values are collected as a weighted
average, with values that fall half way between cells in the input
axis variable evaluated at half weight, but in the case of the
interval report any sample only contributes to one cell. Like
the histogram and scatter plots, the interval report offers the
ability to use a variable to selectively filter the data to accept
only samples from time periods when a certain variable has a
non-zero value.
If multiple logs are opened at once and all log windows have the
same layout, it is possible to overlay and compare data from
multiple log files. You can synchronise the layouts by selecting
Sync all other windows to this layout from the layout
menu in the log viewer window. To bring up the reference data,
right click the interval report and select the files you want to
compare with under the Toggle reference data from other
logs menu. Optionally, you can select to have the software
highlight the highest and lowest values in each row. If any of
the reference logs have a comment entered, the first line of the
comment will be displayed along with the file name on the top of
the screen. If the tab layout of any of the opened logs is changed
so that the current window is not identical to the referenced
window, or the interval report configuration is not identical
the compared data will look strange until the windows are all
synchronised to the same layout again.

35

5. Log viewer 5.4. Interval report

Figure 5.6: Property dialog for interval report

Figure 5.7: Interval report of a dyno test

36

5. Log viewer 5.4. Interval report

Figure 5.8: Interval report of a dyno test in graphical mode

Figure 5.9: Interval report comparing multiple logs, with
the lowest values highlighted in red and the highest values
highlighted in green. These colours can be changed in the log
viewer settings.

37

5. Log viewer 5.4. Interval report

Figure 5.10: Interval report comparing multiple logs in graph
mode.

38

5. Log viewer 5.5. Reference log overlay

5.5 Reference log overlay
The application allows overlaying a second log file’s data on top
of the loaded log file. To do this, select File -> Open reference
file from the menu bar at the top of the screen. Variables from
the reference log will be listed with the suffix :R in their name.
To line up the times on the reference log and the main log, add
a reference channel to one of the chart views and then click the
chart with the left mouse button while holding the Shift key
and drag until the logs line up.
Two shortcuts are provided in the right click context menu in
the chart view to speed up bringing up the reference channels.
The user defined variables are also computed for the reference
log but in order to refresh them after changing or adding variables,
the reference log must be reloaded.
In case you wish to compare different parts of the same log, the
same file can be loaded for main log and reference.

5.6 User defined log variables
The application lets the user define log variables calculated
from the values of any number of other log variables or if a
configuration is loaded, items from the loaded configuration may
be referenced as well. These are stored inside the app’s global
configuration.

Figure 5.11: Dialog for configuration of user defined variables

The basic syntax is detailed in chapter 6 but with the following
additions that only apply to log variables:

39

5. Log viewer 5.6. User defined log variables

_time Returns the time stamp of the sample being computed,
starting at zero.

delay(x,d) Returns the value of x delayed by the time specified
by d. d can be negative to advance instead of applying a
delay.

deriv(x,t) Returns the derivative of x at the current point
in time, where t specifies the sample time span. If only
one argument is given, then the last sample is used for
reference. For example: deriv(enginespeed, 0.5) returns
the change in enginespeed by comparing a sample a quarter
of a second prior to a sample a quarter of a second ahead.
If t is negative, then instead of looking ahead to find the
current derivative, the derivative is taken as the difference
between the current sample and a sample prior in time to
the current sample.
The most accurate results are had if the derivative function
is applied directly on a log variable instead of taking the
derivative of the result of some expression due to the way
time stamps are handled with multiple channels.

lowpass(x,d) Applies an exponential decay filter to the value
of x, where d specifies the amount of filtering done. d has
a valid range of 0 to 1 where 0 is no filtering at all and 1 is
absolute filtering, no data gets through.
For example: lowpass(enginespeed, 0.9) returns the
value of enginespeed filtered in such a way that only a
tenth of the ampliitude of the change each sample represents
gets passed through.

sum(x, cond) Accumulates the value of x across the entire
duration of the log, useful for the purposes of integration.
Takes an optional second argument, which zeroes the value
of the accumulator if its value is zero.

c(x) Where x is the name of a unit configuration item, this
returns the value of that item.

40

5. Log viewer 5.7. User defined log variables examples

c(x, offset) Where x is the name of an array configuration
item, this returns the value stored at a certain offset in the
array. Offset can be a constant or a computational result.

overflow(x,max,min) An overflow filter for variables that
have a limited range, used for example if you have a counter
that counts from 0-255 and starts over, and you want to
keep track of the accumulated value which is much larger
than 255. Takes at least one, at max three arguments, first
being the input value and the second optional argument is
the value at which the input overflows, that is one greater
than the maximum count (the value that the counter
would have reached on overflow, if it hadn’t overflowed),
defaults to 256 if not specified. The third argument is the
expected starting value after overflow, defaults to zero if
not specified.

latch(x,reset) A function that takes one argument and simply
remembers the first value passed to it and remembers it,
always returns that value on every successive run. An
optional second argument may be passed, which will reset
the output value to the current value of the first argument
if the second argument’s value is non-zero

5.7 User defined log variables examples
Being able to create custom variables via mathematical expressions
enables endless possibilities in quick and efficient interpretation
of log data. Below are some examples of the possibilities.

5.7.1 Auto tuning of fuel table
In this example used on an LPC4 ECU, a custom variable is
created that shows how far off target the air:fuel ratio is in a log:
lambda / lambdatgt

41

5. Log viewer 5.7. User defined log variables examples

Alternative: delay(lambda, -0.1) / lambdatgt if the lambda
sensor has slow response the signal can be advanced, in this case
by 0.1 seconds.

Next step, use the histogram view to plot a table on the axis of
the primary fuel map.

Now, select all fields in the histogram generated table and copy
to clipboard. Go edit the primary fuel map and use the modifier

42

5. Log viewer 5.7. User defined log variables examples

paste function (ctrl-M) to multiply the values of the table by the
values from the histogram view.

5.7.2 Measuring acceleration rate, estimating power output
In this example used on an LPC4 ECU but applicable to anything,
the rate of acceleration is calculated as the derivative of road
speed. Since the rate of acceleration is a function of thrust
(aka torque after gearing) and vehicle weight it can be used
to determine how much of the power delivered to the wheels
goes toward accelerating the vehicle. The same function can
as well determine the power used to slow the vehicle down,
which if the vehicle is coasting in neutral on a flat road equates
the aerodynamic and rolling drag in one figure. If the drag is
determined as a function of speed it can then be added on top of
the acceleration power to come up with a true power figure and
a power curve that is the correct shape.

First, create a variable that takes the derivative of the speed.

accelrate = lowpass(deriv(roadspeed / 3.6, 0.3), 0.8)
In this example, road speed is divided by 3.6 to convert it from
kilometres per hour into metres per second, then a derivative is
taken over 0.3 seconds and the result filtered by 80% as the road
speed signal has some noise to it.
The output of this expression is the acceleration in metres per

43

5. Log viewer 5.7. User defined log variables examples

second per second (metres per second squared, remember 1
gravity is said to be 9.82 in the same units).
To convert the rate of acceleration to a power figure, it needs
to be multiplied by the speed again as well as the mass of the
vehicle.

accelpower = (accelrate * 1500 * (roadspeed / 3.6)) /
1000
Shortened:
accelpower = (accelrate * 1500 * roadspeed) / 3600
In this case, 1500kg is the mass of the vehicle and road speed is
again divided by 3.6 to convert from km/h to m/s. The result is
then divided by 1000 to convert from watts to kilowatts. Remember,
a watt is one newton metre per second. The rate of acceleration
multiplied by the mass is the force pushing the vehicle forward
and the road speed is the rate at which the work is done.

44

5. Log viewer 5.7. User defined log variables examples

45

6 Mathematical expressions

Starting in versions released after mid February 2017, mathematical
expression support has been greatly expanded by the development
of a new math expression parser system that is not based on an
external library and thus integrates better with every aspect of
the application. The syntax follows most established concepts
in in-line mathematics, with named variables and function calls
on the form of f(x) with commas separating multiple arguments
where applicable. The order of operations is alterable by parentheses.
As this is a new development any user feedback would be appreciated,
namely if any bugs are discovered in the calculation or requests
for operators enabling certain type of computation.

6.1 Built in operators and variables
+ Adding operator.

- Subtraction operator, may also be used to invert the sign of
a number by placing inside parentheses, for example 2 *
(-2) has a result of -4.

* Multiplication operator.

/ Division operator.

^ Power operator, raises the left number to the power of the
right number. For example 4 ^ 2 returns 16.

% Integer remainder operator, returns the remainder of an
integer division. For example 12 % 5 return 2.

46

6. Mathematical expressions6.1. Built in operators and variables

= Equals operator, returns 1 if numbers on both sides are equal,
0 otherwise.

> Greater than operator, returns 1 if the number on the left
has a greater value than the number on the right.

< Less than operator, returns 1 if the number on the right has
a greater value than the number on the right.

& Bitwise integer AND operator.

| Bitwise integer OR operator.

_e Euler’s constant, e

_pi Pi, π

min(...) Returns the lowest value from a list of up to 16 arguments.
Example: min(4,1,7) returns 1.

max(...) Returns the greatest value from a list of up to 16
arguments. Example: max(4,1,7) returns 7.

avg(...) Returns the average value of the list of up to 16 arguments.
Example: avg(3,1,8) returns 4.

sqrt(x) Returns the square root of the argument. Example:
sqrt(4) returns 2.

log(x) Returns the base 10 logarithm of the argument. Example:
log(100) returns 2.

ln(x) Returns the natural logarithm of the argument. Example:
ln(_e) returns 1.

abs(x) Returns the absolute value of the argument, that is,
strips the negative sign away if necessary.

pos(x) Limits the value to zero and above. Returns the value of
the argument if the argument is positive, otherwise zero.

neg(x) Limits the value to zero and below. Returns the value of
the argument if the argument is negative, otherwise zero.

47

6. Mathematical expressions6.1. Built in operators and variables

exp(x) Exponent operator, returns the Euler constant to the
power of the argument.

ceil(x) Rounds the argument up to the next integer value.

floor(x) Rounds the argument down to the next integer value.

sin(x), cos(x), tan(x) Trigonometric functions, taking arguments
on radian form.

arcsin, arccos, arctan(x) Inverse trigonometric functions in
radian form.

if(x,y,) Ternary operator. Takes two or three arguments. If the
first argument has a value other than zero, it returns the
value of the second argument. Otherwise it returns zero or
if specified, the value of the third argument.
Example: if(tps > 90, rpm) returns the value of rpm if
the value of tps is greater than 90, otherwise zero.
if(roadspeed > 10, rpm / roadspeed, -1) Returns
the ratio of rpm divided by roadspeed if roadspeed has a
value greater than 10, returns -1 otherwise.

not(x) Bitwise integer NOT operator, returns the inverse of all
bits in argument.

xor(x,p) Bitwise integer XOR operator.

lshift(x,s) Bitwise left shift operator, treats x as integer and
shifts bits left by s.

rshift(x,s) Bitwise left shift operator, treats x as integer and
shifts bits right by s.

and(...) Logical AND operator, evaluates up to 16 arguments
and returns 0 once it finds an argument that has a zero
value. Further arguments are not evaluated. Returns 1 if
all arguments have non-zero value.

or(...) Logical OR operator, evaluates up to 16 arguments and
returns 1 once it finds an argument that has a non-zero

48

6. Mathematical expressions6.1. Built in operators and variables

value. Further arguments are not evaluated. Returns 0 if
all arguments have a zero value.

lookup(c,d,x) Lookup on a curve with two or more points of
data with linear interpolation. c specifies the breakpoints.
d specifies the data points. x is the lookup value. The
breakpoints and data points are constants, expressed as
comma separated lists of numbers enclosed in quotation
marks.
This function is highly useful to convert the value of a
non-linear sensor to real units or express any other non-linear
function that is derived from measured data.
Example: lookup("1,2,3,4","100, 200, 300, 400", x)
returns a value of 100 if x is equal to or smaller than 1, a
value of 400 if x is equal to or greater than 4, a value of
200 if x is equal to 2 and a value of 350 if x is equal to 3.5.

49

7 Scripting

Many aspects of the application are scriptable by advanced users.
The scripting support was developed for dynamometer operation
but is applicable to other applications as well. The scripts are
structured as nestable json arrays with each instruction being
an array of which the first (and possibly only) item denotes the
name of the instruction to be executed. Script files may include
Javascript style comments but comments in the configuration
files are stripped out when the file is saved. The scripts run
asynchronously so callbacks are used for blocking operations.
Loops are run at the refresh rate of the application as configured
in the settings dialog. If application is set to run at 50 frames
per second, the script loops will run at 50 frames per second.
Many of the script instructions return a boolean value, and if
they do return false, execution of the branch the instruction is
in will end. If an instruction is to be allowed failure without
affecting execution of following instructions, wrap the instruction
in an if statement or try statement.
Some instructions accept expressions as arguments, the expression
format is the same as described in the last chapter and in the
user defined variables chapter with the folllowing added operators:

widgetval(wid) Returns the value of a number input widget in
a script dialogue, where wid is the widget identifier.

_rows Returns the number of rows in the table currently being
edited. Behaviour not defined when not in edit mode.

_cols Returns the number of columns in the table currently
being edited. Behaviour not defined when not in edit
mode.

50

7. Scripting 7.1. Script invocation

_cursorrow Returns the row the edit cursor is currently at in
edit mode, with row 0 being the bottom row.

_cursorcol Returns the column the edit cursor is currently at
in edit mode, with column 0 being the left most column.

7.1 Script invocation
There are a number of ways to invoke scripts. This section
covers where scripts may be defined and invoked.

7.1.1 Keyboard shortcuts
In the configuration file, under the key "keyshortcuts" scripts
can be tied to function keys F1 through F12, although keys
F1-F3 and F12 have default functions in the application they
can be overridden by scripting. Example:

1 " keyshortcuts ": {
2 "F5": ["edit", " mainfuelmap "],
3 "F6": ["edit", " mainignmap "]
4 }

7.1.2 Library
In the configuration file, in the definition section under the key
"scripts" scripts can be defined by name to be invoked by the
library instruction or if they have a description attached to
them, they can be found under the Tools menu in a submenu
named Script library. In the main configuration body, under
the key "userscripts" library scripts can also be defined.
Example:

1 " scripts ": {
2 " canscan_interactive ": {
3 " description ": " Interactive CAN scan",
4 " script ": [
5 ["rpc", " startscan "],
6 [" onexit ", [["rpc", " endscan "],
7 ["alert", "Scan ended at address \%s", " canscanaddr "]]

51

7. Scripting 7.2. Script instruction set

8],
9 [" statusdialog "],

10 ["sleep", 200,
11 ["while", "rt (\" canscan_running \") > 0",
12 [" status ", " Transmitting on address \%s", " canscanaddr "]
13]
14]
15]
16 }
17 }

7.1.3 Events
Some events can be tied to scripts in the configuration file.

Configuration open If the configuration contains a key named
"onload" that will be invoked when configuration is opened.

Configuration item edit If the configuration item being edited
has a key named "onopen" that will be invoked when that
item is opened for editing.

Configuration item value change After a new value for a
configuration item is sent to the connected controller,
a script specified by the "onchange" key is invoked if it
exists. This happens both in edit mode and when sending
local differences over to controller when going on-line.

7.2 Script instruction set
7.2.1 set

Sets the value of a config variable and sends the value to the
connected controller.
Takes 2 arguments, variable name and an expression of the value
to set. Expression follows same format as user defined RT vars
unless the config variable is an enumerator, in which case the
string value is used.
Returns false if there is an error.

52

7. Scripting 7.2. Script instruction set

Examples:
Set targetspeed to 3000:
["set", "targetspeed", 3000]
Increment targetspeed by 100:
["set", "targetspeed", "c(\"targetspeed\") + 100"]

7.2.2 runscript
Loads script from file and runs it.
Takes one argument, the full path to the script file.
Returns false if there is an error running the script or the file is
not found.
Example:
["runscript", "c:\dyno\cannedcycle.calscript"]

7.2.3 hold
Waits for condition to become true, then starts a timer that
delays an action until after condition has held truth for a given
amount of time. If the condition becomes false, the timer is
reset.
Takes 3 arguments, condition string in expression format, the
hold time in milliseconds and a callback to run when timer runs
out.
Example:
["hold", "rpm > 2000 && rpm < 2500", 3000, ["alert",
"Success"]]

7.2.4 sleep
Delays execution of a script for a given amount of time
Takes two arguments, the delay time in milliseconds and the
callback to run when the timer is out.
Example:
["sleep", 2000, ["alert", "Two seconds later"]]

53

7. Scripting 7.2. Script instruction set

7.2.5 while
An asynchronous while loop.
Takes 2-3 arguments, an expressional condition, a callback to
run while the condition is true and optionally, a callback that
runs once condition becomes false and the loop exits.
Example:
["while", "enginespeed < 2000", ["set", "throttletarget",
"c(\"throttletarget\") + 1"]]
Example with exit callback:
["while", "enginespeed < 2000", ["set", "throttletarget",
"c(\"throttletarget\") + 1"], ["alert", "Ready to
test"]]

7.2.6 if
An if/else condition.
Takes 2-3 arguments, an expression, a callback to run if true and
optionally a callback to run if condition is false.
In place of an expression, a script that returns a value may be
used. Examples:
["if", "enginespeed = 0", ["alert", "Engine is not
running"]]
["if", "enginespeed = 0", ["alert", "Engine is not
running"], ["alert", "Engine is running"]]
["if", ["confirm", "Party?"], ["alert", "The user
likes to party"]]

7.2.7 try
Runs a subscript but returns true regardless of return value of
subscript. Optionally accepts another script argument to be run
if the first one fails.
Used if parts of the script are allowed to fail without ending
script execution.
Examples:
["try", ["burn"]]

54

7. Scripting 7.2. Script instruction set

["try", ["burn"], ["alert", "Did not save to flash"
]]

7.2.8 error
Aborts script execution, displays error dialog. Takes 1-9 arguments,
the first being an error message and if the error message contains
a format string, the rest of the arguments can be names of RT
variables or config variables whose values to display.
Examples:
["error", "Engine has stalled"]
["error", "Engine overheating: %s C", "coolanttemperature"
]

7.2.9 return
Aborts execution of a single script thread by returning a false
value.

7.2.10 log
Prompts user for file name and starts recording data log
Takes no parameters
Example: ["log"]

7.2.11 endlog
If data is being recorded, the recording is ended.
Takes no parameters

7.2.12 debug
Prints a message to the debug console.
Takes 1-12 arguments, the first being a format string and the
rest being optional variable names (rt or config vars)
Examples:
["debug", "Everything is alright"]
["debug", "Speed is %s RPM", "enginespeed"]

55

7. Scripting 7.2. Script instruction set

7.2.13 logevent
Prints a message to the log being recorded, if recording a log in
the native log format. Otherwise identical to the debug function
in operation.
Takes 1-12 arguments, the first being a format string and the
rest being optional variable names (rt or config vars)
Examples:
["logevent", "Started acceleration"]
["logevent", "Set hold speed to %s", "holdspeed"]

7.2.14 clipboardprint
Formats a text string and copies to clipboard. Works identical to
other text formatting functions. Takes 1-12 arguments.

7.2.15 alert
Displays an informative dialog box. Pauses script progression
until dialog is closed.
Takes 1-9 arguments, the first being a format string.
Example:
["alert", "Engine temperature is %s and oil temp is
%s", "coolanttemperature", "oiltemperature"]

7.2.16 confirm
Displays a dialog, pausing script progression and allowing the
user to decide whether to continue script execution or not.
Takes 1-9 arguments, the first being a format string.
Returns false if the user clicks the Cancel button.
Example:
["confirm", "Oil temperature is only %s C, do you
wish to proceed with test?", "oiltemperature"]

7.2.17 creatertvar
Declares user defined RT variables which can from then on be
used in the script as well as other scripts, displayed on a gauge

56

7. Scripting 7.2. Script instruction set

or recorded to a data log
Takes one argument, an array of json definitions as used in
configuration file. Variables may be redeclared.
Example:

1 [" creatertvar ", [
2 { "id":" speederror ",
3 " expression ": "rt (\" enginespeed \") - c(\" speedtarget \")"
4 }
5]
6],
7 ["alert", "Speed is \%s from target ", " speederror "]

7.2.18 declare
Declares a variable that is global in script context and whose
value can only be updated by running the declare instruction
again. Takes two or three arguments. First argument is the
variable name, second is an expression and third which is optional
sets the number of digits after the decimal point when the variable
is printed using any of the text formatting instructions but has
no effect on the precision at which the value is stored.
Examples:
Declare variable foobar with a value of 0 and printable with 2
digits after the decimal point: ["declare", "foobar", "0",
2]
Increment foobar by 1: ["declare", "foobar", "foobar +
1"]
Use foobar in other expressions: ["if", "foobar > 42", [
"alert", "Foobar is as big as %s", "foobar"]]

7.2.19 bottomframe
Sets the display mode of the frame at the bottom of the main
window.
Takes one argument, 0 for ticker view, 1 for documentation view,
2 for gauge view.
Example: ["bottomframe", 0]

57

7. Scripting 7.2. Script instruction set

7.2.20 resetplot
When gauge panel has a live plot widget, this command clears
all data from live plot and restarts plotting.
Takes no arguments.

7.2.21 haltplot
When gauge panel has a live plot widget, this command freezes
the plot so no new data is drawn.
Takes no arguments.

7.2.22 procedure
Declares a procedure that may be called by name. The procedure
can also call itself so this enables looping by recursion.
Takes two arguments, a name and the script to be run.
Example:
["procedure", "fullthrottle", [["confirm", "Are you
sure?"], ["set", "throttletarget", 100]]]

7.2.23 run
Calls procedure by name.
Takes one argument, the procedure name.
Example: ["run", "fullthrottle"]

7.2.24 endscript
Ends script execution and stops all asynchronous threads this
script may have spawned.
Takes no arguments.

7.2.25 statusdialog
Asynchronously opens a dialog displaying status messages from
script. Closing this dialog will end script execution by same
means as endscript command.

58

7. Scripting 7.2. Script instruction set

Dialog will close by itself when script execution ends.
Optional arguments listed in order:

Initial status text String, defaults to empty.

Static text Boolean, defaults to false. If true, displays a text
that doesn’t change, more like a message box but asynchronous,
script continues running while the dialog is open.

Font size Integer, sets the font size of the dialog. Default 16.

Title String, sets the title bar text of the dialog. Default "Script
running"

Button label String, sets the label of the button that closes
the dialog. Default is "Abort"

Examples:
["statusdialog"]
["statusdialog", "This dialog will close when the
script stops", true]

Figure 7.1: Script status dialog

7.2.26 status
Updates the status message displayed in the status dialog or
other widget displaying the status of the current script.
Takes 0-9 arguments, if there’s no argument the status is cleared,
if there are arguments the first is a format string, same as confirm
and other messaging functions that use format strings.
Example:
["status", "Waiting for engine to start"]

59

7. Scripting 7.2. Script instruction set

7.2.27 onexit
Declares a callback that runs when the script exits either due to
user interruption or other cause. Useful for resetting parameters
that the script may alter during run time.
Takes one argument, the callback to run on exit.
Example:
["onexit", ["set", "throttletarget", 0]]

7.2.28 nop
No operation, no arguments.

7.2.29 edit
Opens a certain configuration item in the editor window.
Takes one argument, the id of the item to edit.
Example: ["edit", "mainfuelmap"]

7.2.30 rpc
Executes a remote procedure on the connected controller.
Takes one or more arguments, first being the identifier of the
remote procedure. The rest being arguments if the remote procedure
takes any.
If the remote procedure returns any data, those data values may
be assigned to variables in the scripting memory space.
Returns false if no controller connected.
Examples:
Remote procedure that takes no arguments:
["rpc", "resetltft"]
Remote procedure that takes input but returns no data:
["rpc", "canxmit", ["widgetval(canid1)", "widgetval(plen1)",
"widgetval(b10)", "widgetval(b11)", "widgetval(b12)",
"widgetval(b13)", "widgetval(b14)", "widgetval(b15)",
"widgetval(b16)", "widgetval(b17)"]]

60

7. Scripting 7.2. Script instruction set

Remote procedure that returns data. Note that the return
variables are placed within brackets at the end of the argument
list:
["rpc", "ccantest", ["widgetval(ccoffset)", ["cccanid",
"ccplen", "ccb0", "ccb1", "ccb2", "ccb3", "ccb4", "ccb5",
"ccb6", "ccb7"]]

7.2.31 library
Executes a script from the script library provided by the configuration
file. Scripts can be found under the "scripts" key in the definition
section in the configuration file or they can be found under the
"userscripts" key in the main part of the configuration file. If a
script from userscripts bears the same name as a script from the
definition section, the one from the userscripts section is used.
Example:
["library", "canscan_interactive"]
If the description is omitted from the script definition, the script
will not appear in the Script library section of the Tools
menu of the application main window.

7.2.32 dialog
Opens a dialog, takes one or two arguments. Dialog layout is
defined in the same manner as the gauge displays in the application,
but with optional extra settings.

1 [" dialog ", {
2 "title": " Script dialog ",
3 "xsize": 400,
4 "ysize": 300,
5 " noresize ": 1,
6 " onclose ": ["alert", "Thank you for playing "],
7 " bgcolor ": "0 xFFFFFF ",
8 " fgcolor ": "0x000000"
9 },

10 [
11 {
12 "id":" enginespeed ",
13 "size":[
14 50,

61

7. Scripting 7.2. Script instruction set

15 20
16],
17 " position ":[
18 50,
19 0
20],
21 "type":"gauge"
22 },
23 {
24 " caption ":"Okay",
25 "size":[
26 50,
27 20
28],
29 " position ":[
30 0,
31 0
32],
33 "type":" button ",
34 " onclick ": ["rpc", " canxmit ", [31337, 1, 42]]
35 },
36 {
37 " caption ":"This is a static text object ",
38 "size":[
39 50,
40 20
41],
42 " position ":[
43 0,
44 50
45],
46 " fgcolor ": "0x0000FF",
47 " bgcolor ": "0x0",
48 "type":" static "
49 }
50]

62

7. Scripting 7.2. Script instruction set

Figure 7.2: Script opened custom dialog

The optional dialog properties that may be specified:

xsize Specifies initial X dimensions. Default is 800 pixels.

ysize Specifies initial Y dimension. Default is 600 pixels.

bgcolor Specifies background colour in a hex string RGB format
("0xBBGGRR"). Default is black, "0x000000". This property
is inherited to widgets unless they have their own bgcolor
property specified.

fgcolor Specifies text (foreground) colour in the same manner
as the bgcolor property and is inherited in the same manner.
Default is white, "0xFFFFFF".

noresize Boolean option, if set to 1 or true will prevent the
window from being resized or maximised.

title Sets the window title. Default is "Gauge dialog".

maximised Specifies that the dialog should start maximised.
xsize and ysize properties still apply if the user unmaximises
the dialog.

onclose Specifies a script to be run when the dialog is closed.

63

7. Scripting 7.2. Script instruction set

7.2.33 burn
Saves configuration to controller flash memory. Returns false if
no controller connected or operation fails for any reason.

7.2.34 getcheck
When using a dialog box with a button widget that is either
stateful (sticky) or checkbox type, this instruction gets the state
of the button. Takes one to three parameters, first being the
widget identifier. Second parameter specifies a script to run if
button is in pressed or checked state, third parameter specifies a
script to run if button is not in pressed or checked state. If only
the widget identifier is specified, the function returns 1 if button
is in pressed/checked state and 0 if not. If scripts are specified
then the return value of the script is passed back. Returns 1 if
button unpressed and a second parameter is specified but no
third parameter.
Example:
["getcheck", "foobar", ["alert", "Button is pressed"
], ["alert", "Not pressed"]]

7.2.35 setcheck
When using a dialog box with a button widget that is either
stateful (sticky) or checkbox type, this instruction sets the state
of the button. Takes two parameters, first being the widget
identifier and the second being the button state. A state value
of 0 specifies that the button is up and not checked, a state of
1 specifies that the button is down or checked. Button events
(oncheck, onuncheck, onclick) are not generated when button
state is altered by the script.
Example:
["setcheck", "foobar", 1]

64

7. Scripting 7.3. Script examples

7.2.36 settext
When using an edit widget or a static text widget, this instruction
sets the text displayed by the widget. It takes two or more
arguments, first one being the widget identifier, the second being
a format string and the rest according to the same convention as
other string formatting instructions.
Example:
["settext", "foobar", "%s", "enginespeed"]

7.2.37 isediting
Conditional test that takes one argument which is the identifier
of a configuration item and returns true if application is currently
in edit mode and the item being edited matches the provided
identifier. Also takes optional second and third arguments which
are scripts for further execution depending on whether the
condition is true or false.

7.2.38 refresheditor
Refreshes data shown in editor, if main dialogue is currently in
edit mode. Used if altering configuration programmatically to
make sure the editor is displaying a current version. Takes no
arguments. Always returns true.
Example:
["isediting", "mainfuelmap", ["refresheditor"]]

7.3 Script examples
7.3.1 Dyno sweep test

1 [
2 [" statusdialog "],
3 [" status ", " Waiting to settle "],
4 ["set", " speedtarget ", "c(\" initialspeed \")"],
5 [" onexit ", ["set", " throttletarget ", 0]],
6 ["set", " throttletarget ", 100],
7 ["while", "rt (\" enginespeed \") < c(\" speedtarget \")", ["nop"],

65

7. Scripting 7.3. Script examples

8 ["hold", "abs(rt (\" enginespeed \") - c(\" speedtarget \")) < 100", 2000,
9 [

10 [" status ", " Running sweep"],
11 ["set", " accelmode ", 1], // Start acceleration
12 ["while", "rt (\" enginespeed \") < c(\" endspeed \")", ["nop"]]
13]
14]
15]
16]

7.3.2 Slowly increment throttle
This program increments config value throttletarget at the rate
of 50% per second if the application is running at 50 frames per
second.

1 [
2 [" statusdialog "],
3 ["while", "c(\" throttletarget \") < 100",
4 [
5 ["set", " throttletarget ", "c(\" throttletarget \") + 1"],
6 [" status ", " Throttle at \%s percent ", " throttletarget "]
7]
8]
9]

66

	Introduction
	Getting started
	Installation
	System requirements
	Downloading
	Installation and first run

	Opening a configuration file
	Going on-line
	Editing configuration

	Options
	Options dialog
	Burn to flash
	Auto burn
	User defined realtime variables
	Calibration comments
	Ticker variables
	Realtime display panel
	Convert binary log file
	Sync realtime clock of controller
	Download logged data from controller
	Configuration presets
	Capture event log
	View controller errors

	Configuration conversion
	Log viewer
	Charts
	X/Y plot
	Histogram
	Interval report
	Reference log overlay
	User defined log variables
	User defined log variables examples
	Auto tuning of fuel table
	Measuring acceleration rate, estimating power output

	Mathematical expressions
	Built in operators and variables

	Scripting
	Script invocation
	Keyboard shortcuts
	Library
	Events

	Script instruction set
	set
	runscript
	hold
	sleep
	while
	if
	try
	error
	return
	log
	endlog
	debug
	logevent
	clipboardprint
	alert
	confirm
	creatertvar
	declare
	bottomframe
	resetplot
	haltplot
	procedure
	run
	endscript
	statusdialog
	status
	onexit
	nop
	edit
	rpc
	library
	dialog
	burn
	getcheck
	setcheck
	settext
	isediting
	refresheditor

	Script examples
	Dyno sweep test
	Slowly increment throttle

